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Abstract 

We show that eikonal corrections imposed on difiaction dissociation pro- 
cesses calculated in the triple Regge limit, produce a radical change in the 
energy dependence of the predicted cross section. The induced correction is 
shown to be in general agreement with the recent Tevatron experimental data. 
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Over the past few years, phenomenological investigations of Pomeron exchange pro- 
cesses have been almost exclusively confined to the study of elastic scattering and total 
cross sections [l-5]. Recently published Tevatron data [6, 71 on single diffraction disso- 
ciation (SDD), enables us to evaluate the compatabillty of the parametrizations used to 
describe elastic and diffractive scattering, and whether, it is necessary to include screening 
corrections, to obtain a successful description of these processes. 

A fundamental problem that that must be tackled when one attempts to make a 
comprehensive analysis of the published high energy data on SDD [6-111, is the fact that 
there is no unique, agreed upon, experimental definition of SDD. Experimental groups 
have used different, and not always mutually consistent methods of extracting the desired 
data. In addition, it is difficult to compare the values that the different experimental 
groups give for w,d, as in their evaluation of a, they have used diverse intergration 
limits for t and Ma . Futhermore, their treatment of the correlations observed between 
Ma and t are entirely different. 

With the above limitations in mind, we present in this communication, a general study 
of SDD, which is compatible with the analysis of elastic scattering, and at the same time 
reproduces all the important features of the experimental data measured in SDD at high 
energies. 

Even though the Pomeron was introduced into high energy physics more than 30 
years ago, its exact definition and detailed substructure remain an enigma. In contrast 
to standard Regge trajectories, the Pomeron has no particles on the time-like sector of 
its trajectory. Nevertheless, it is required both phenomcnologically , to describe the 
forward hadron-hadron scattering data, and theoretically to ensure that Reggc theory is 
self consistent. Indeed, in a Reggeon field calculus the Pomeron is described as a ladder 
of Reggeons yielding [12] a(O) = 1. We will refer to this as the “soft Pomeron” . 

A number of different models have been proposed to account for the rising hadron- 
hadron cross sections: 
1) Donna&e and Landshoff [l] have advocated an ad hoc approach in which the soft 
Pomeron amplitude keeps its traditional form with a(0) = 1 + A N 1.08 . This simple 
model reproduces the qualitative features of the experimental data remarkably well. 
2) Alternatively, one may perceive the Pomcron as a two gluon exchange [13], or more 
generally ss a gluon ladder. Lipatov [la] has shown that such a ladder, when calculated 
within the framework of perturbative QCD, receives its major contribution from high pi 
gluon exchanges. These give rise to a series of poles in the complex j-plane above unity. 
The summation of these poles yield the “hard Pomeron” with A = ~47~2. Bjorken has 
suggested [15] that the generic Pomeron may actually manifest itself in both soft and hard 
modes, each contributing in a different kinematical domain. Models based on a hybrid 
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Pomeron are very successful in reproducing the data [4, 51. 
3) In the QCD inspired model [2, 31, the growth of the total cross section is associated 
with the greater probability of semi-hard gluons to interact with increasing energy. L, 
this case, the need to describe the data over a wide energy range also requires a hybrid 
model [3] consisting of a soft q-q background and semi-hard q-g and g-g interactions. 

All the above models of the Pomeron have a intrinsic powerlike s* rise of the total 
hadronic cross section. We note [4, 16) that the Pomeron amplitude proposed in [l] 
violates s-channel unitarity, just above the Tevatron energy range, for small b. In general, 
we expect the unitarity bound to induce screening effects which saturate the growth of 
o-, making wLo( 5 Inas, which is compatible with the Froissart bound. Technically, this is 
most easily achieved through eikonalization [17], in which the amplitude discussed above 
serves as the lowest order input to the eikonal expansion. Even though in the eikonal 
model one only sums over elastic rescattering, ignoring diffraction in the intermediate 
states, it has the advantage of being simple to apply. In addition, it introduces the 
natural scale of the screening corrections, and allows one to explore different models of 
the Pomeron. 

The main purpose of this letter is to examine the role played by eikonalization in 
SDD. This is investigated utiliring a simple Regge-like Pomeron (11. Extending the same 
formalism to include an input Lipatov type Pomeron is straightforward. As the presentely 
available diffractive data is not sufliciently refined to enable one to discriminate between 
these models of the Pomeron, we shall not discuss it in detail here. 

The simplest way to write down the eikonal formulae is to consider the scattering 
process in impact parameter space. Our amplitude is normalised so that 

0t.t = 4rr1mf( 8, 0) 

The scattering amplitude in bspace is defined as 

where t = -q’ . 

In this representation 

a(a,b) = & / dq e-‘q.bf(a, t) 

otet = 2 db Ima(s,b) 
J. (4) 

(5) V~.I = db ]a(s,b)]’ J 
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s-channel unitarity when written in the diagonlised form implies 

where 

21ma(s,b) = la(s,b)l’+ Gi,(a,b) 

~fm = db Gin(a,b) J 
(‘5) 

(7) 
We list below several assumptions that we make regarding the eikonal model: 

1) At high energy ~$8, b) is assumed to be pure imaginary and can be reduced to the 
simple form 

a(s, b) = i( 1 - e-“(+*)) (8) 

where C~(S, b) is a real function. Analytidty and crossing symmetry are easily restored to 
our oversimplified parametrization by substituting sp --t spe-irp/s . 

2) From eq. (6) we can express Gi,(s, b) an 

Gi,,(s, b) = 1 - e-““W) (9) 
where e-an(‘Sbl denotes the probability that no inelastic interaction takes place at impact 
,parameter b. 

3) We write the t-channel Pomeron exchange as 

fl(s, b) = +)e-&J 

In the simple Regge pole model with a trajectory up(t) = 1 + A + a’t . We have 

V(d) = 2&)(:)* (11) 

where 
P(d) = 4[% + &a;] (12) 

and CO = ~(80) . Agreement with the pp @p) data is obtained with G = 5.2 GeV-’ and 
a’ = 0.25 GeV-’ . 
Eqs.(lO-12) lead to simple expressions for the total and inelastic cross sections with a., = 
~t,,r - o;,l (see Fig. 28). 

a-f = 2nJqs)[hv(s) + c - Ei(-v(a))] ;5: 2xR’(s)[lnv(s) + C] (13) 

gin = ~~‘(s)[h243) + C - Ei(--2v(a))] z 7rRa(s)[h2v(s) + c] (14) 
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where Ei(z) = J?‘, $dt , and C = 0.5773 is the Euler constant. 

The standard approach to evaluate single diffractive dissociation is through the 3-body 
optical theorem [lS] leading to the PPP and PPR d’ 
appropriate cross section is 

lagrams of interest ( see Fig. 1 ). The 

Ma& = (-&2A+aa’e[Gppp(t)(~)A + Gpp&)(+] 
80 JO 

(15) 

where all of the relevant couplings have been absorbed into Gppp(t) or GppR(t). ~2 
denotes the mass of the diffractive system, and for the Regge trajectory we have taken 
aR(t) = + + t . 

Eq. (15) C~JI be rewritten in the impact parameter representation 

M*du,,, Ml 
dM’ = GPPP~~(~)‘~(~)~~“~:(~)~~*~:(~) J dbdb’e 

-i$g$-* 

+ GPPR~$&'~($)-~ J &&‘e-~-$g& 

where 

R(& = 2& + 7; + 4a’ln(j$) 

+oi < lGeV-s denotes the radius of the triple vertex (191 . a:(-&) = 2B,,, , where B,d 
denotes the slope of the SDD cross section . Upon integrating eq. (16) we have 

Ms!$ = 2,R$,&&)2A[G~~~(~lA + GPPR&+] 
30 

(18) 

We will now comment on consequences of the above result and its relavence when 
compared to experimental data [S-11] : 
1) We expect the forward SDD differential nuclear slope to be in the range +Ba < B,d < 
B.1, where B.1 = 2%‘(a) denotes the appropriate elastic scattering slope. In general, 
B,d is Ma dependent. An explicit logarithmic dependence is implied by the definition of 
R($) in eq.(17). We also note that due to the different Ma power dependences, the 
PPR contribution is concentrated at lower values of M’ than the PPP. For energies in 
the ISR-Tevatron range, where In’s 2 q ,we expect qualitatively, that B,d 2 iBe, with 
a very moderate In(+) dependence. This is in agrement with the data. We are unable 
to make a numerical fit due to strong correlations between Ma and t, observed at small 
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values of M1 . We strongly urge that measurements of B,d be made for higher values of 
the mass spectrum, say Ms > 16 GeVZ. 
2) The M’ dependence of the SDD cross section is dominated by 
[Gp~p(M’)-(l+~) + G~~R(M’)-(‘.‘+‘*)]. If we express this dependence by ( M2)-“*lt, we 
expect (a.ff - 1) > A and that (+f - 1) approaches A from above in the limit of very 
high s when the importance of the PPR term diminishes. This behaviour is corroborated 
by the two recent studies [6, 7] of the Ma distribution at the Tevatron. In passing we 
note, that the experiments at the FNAL 18) and ISR [9] reported approximate scaling, 
i.e. a (Ms)-’ behaviour. This is most probably due to the much narrower Ma interval 
investigated. The approximation in which we only consider the PPP + PPR terms is 
obviously not sufficient to describe data at lower energies, where lower lying trajectories 
are important [20]. 
3) Eq. (18) predicts a strong powerlike s aA dependence of the differential as well as 
the integrated SDD cross section. This is a much stronger energy dependence than the 
predicted s* behaviour of utl.rr and clearly not compatible with either theory or data. 
Indeed, the CDF data (71 taken at fi = 546 and 1800 GeV show only a moderate 20% 
increase of the appropriate cross sections. This should be compared with an 80% increase 
expected from a ssA behaviour with A = 0.125, as reported by CDF 171. 

Obviously, eq.(l4) violates unitarity. Unltarity is restored, in the eikonal model, by 
multiplying the integrand of eq. (16) by e-s”(r,*) ( see Fig. 2b). The resulting cross 
section is 

M”dv,d 
dMa = G~pi-t%y&)~~($)~ IrRf(,&,TilT(“c) . 

J &&‘e-“(.).-fi .,-t@-* - 
+ GPPW;( &)aA($)-* - 

[dl:(-&);‘nli:(T) * 

J &&‘e-4(‘)* -&j . ,-e-$zj 
l O 

where u(a) is given by eq. (11) and R’(s) by eq. (12). After integration we have 
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M’do,,j 

dMa = 2&j,, C+)‘” * PPPP($~~(~~ &~lDI 74~7 243)) 

M” 
+GPPR(-$-~~~~~~~~ 7(e, Wa))l (20) 

(21) 

and ~(a, 2~) denotes the incomplete Euler g-a function -y(a, 2~) = 1,” .z”-‘e-‘dz . 

We list below the important consequences of the expression we obtained in eq. (20). 
1) The &pace SDD amplitude, which is the integrand of eq. (19), differs from the in- 
trinsic integrand of eq. (16) by the corrective multiplicative factor e-rn(*sb). Whereas, the 
unabsorbed bspace SDD amplitude is central and can be approximated by a Gaussian 
centered at b = 0, the corrected amplitude has a dip at b = 0, and its Gaussian approx- 
imation is centered at some b = bo # 0. This behaviour suggests that the generalized 
unitarity condition [20] is satisfied. This is consistent with the general pattern expected 
of SDD b-space amplitudes after screening has been induded [21]. 
2) Our qualitative observation that B ,d 1 $ B.1 is unchanged. We expect the ratio 2 
to grow with energy, up to a limiting value of 1. 
3) The dominant Ma dependence of & is identical to that determined from eq.(lS). We 
stress, that the two properties of the triple Regge model, those concerning the t and M’ 
dependence, which are in agreement with experiment, are essentially unchanged once the 
eikonal correction is made to the original SDD amplitude. 
4) Eq. (20) exhibits a weak s-dependence. This is best seen if we examine our result in 
the high energy limit, where we have ai -+ 2, and y[oi,2v(s)] -+ r(2) . Thus the factor 
srA is compensated by [$$i and eq. (20) reduces to 

MS $$ = *T’(~)~R’(s)[G,,,($)-~ + GppR(!?$(i+‘A)] (22) 

Since 0.d is not very sensitive to the high M1 integration limit, we find that 0.d depends 
on s only through R’(s). Our result indicated that the changes induced by eikonalization 
on ottot and CT,., are quite different. For Q tot the input aA power behaviour is modified to 
In’s, the energy scale at which this change becomes appreciable is at fi x 3 TeV [4]. For 
o,d the input saA power behaviour is modified to Ins, this occurs at an energy scale which 
is considerably lower i.e. fi cz 300 GeV. In addition we expect that 2 ,y- 0. To test 
this theoretical prediction, we need to know A and the ratio between Gppp and Gppn. 
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These two parameters are obviously correlated. Donna&e and Landshoff [l] suggest a 
global orO( fit with A = 0.08. This choice is compatible with the CDF Ms distribution, if 
the PPR contributes 40% of the integrated 0.d at 546 GeV. The above value quoted for A, 
which was suggested in [1], used the E710 measurement (231 of atot at J; = 1800 GeV. A 
recent CDF measurement [24] at the same energy has a considerably higher value for otot 
which is consistent with a value of A = 0.11. The corresponding PPR contribution to o,d 
at 546 GeV is now reduced to 15%. Irrespective of which value of A we use, we are not 
able to find an adequate overall fit to SDD data measured over the entire energy range 
[6-U]. We feel that this is due to the following experimental and theoretical difficulties: 
1) As we noted previously, comparing o,d v&es obtained by different experiments is 
not very instructive, due to the diverse constraints and algorithims used by the different 
groups. 
2) To minimize experimental uncertainties we consider the two CDF measurements at Jj 

zl5s. If we take A = 0.08 we predict a ratio of”g 
546 and 1800 GeV, where they find [7] R = w = 1.20 rt 0.06, with 1.4 5 Ma 5 

ppp = 1.35 for the PPP term, and for 
the PPR term Elppz = 1.25. Assuming the PPR contribution to account for 40% of the 
SDD cross section at 546 GeV, we have a theoretical prediction of R = 1.31. For A = 
0.11, we obtain Rppp = 1.35 and Rpp~ = 1.20. This gives us a prediction for R = 1.33, 
assuming the PPR to account for 15% of the SDD cross section at 546 GeV. 
3) The CDF group start their M’ integration at M,$,, = 1.4 GeVZ, which is much too 
low for any triple Regge analysis. To eliminate the region of low diffractive masses, we 
compare with the experimental ratio quoted by CDF (251 of R = 1.24 rt 0.10 obtained 
with MAi, = 16 Gel”. For A = 0.08 we obtain R = 1.34, while for A = 0.11 we have R 
= 1.37. 
4) Extrapolation of our model to ISR energies ( using values of the parameters norm&red 
to the CDF data) underestimates the measured values of c,d. This is not unexpected, 
as our simple model with only PPP + PPR contributions is clearly not sufficient at ISR 
energies, where a more detailed analysis [20] demonstrates the importance of lower lying 
trajectories at these energies. Examining SDD data over the whole energy range (6-111, it 
appears that screening corrections become important at energies lower than that predicted 
by our eikonai model. This is not surprizing, M in our treatment of dkonalization we 
have only included elastic rescattering effects in the intermediate states, while completely 
ignoring diffractive effects or so called inelastic shadowing correction (see Fig. 2c)[26]. 
Such corrections cannot be considered to be small as the ratio o,d/U*.l is of the order of 5 
at the Tevatron energies. It means that dimensionless triple Pomeron vertex introduced 
in eq.(19) is about $ and diagrams of Fig. 2c should be taken into account at the next 
stage of our approach. 
5) In contrast to point 4) we expect the extrapolation of our results to extremely high 
energies to be trustworthy. Integrating over 1.4 Gel” < M’ 5 0.15 s, we predict that o,d 
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= 13.3 and 13.9 mb at fi =16 and 40 TeV respectively, demonstrating the very weak s 
dependence predicted by our model. 

In conclusion, we wish to emphasis that our model does reproduce the main features of 
SDD above 300 GeV, in particular the exceedingly moderate dependence of 0.d on s. The 
model which does not include lower lying Regge trajectories is too simple to successfully 
describe the SDD data at lower energies. 
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Figure Captions 

Fig-l: SDD in the triple Regge approximation. 

Fig.2: 

a) Screening corrections in the eikonal approximation to elkstic scattering. 

b) Screening corrections in the eikonal approximation to SDD. 

c) Inelastic shadowing (screcening) corrections to SDD. 
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